GEOMECHANICS

DR. A. FERRARI AND PROF. L. LALOUI

Exercise 1 - 19.09.2024 - Solution

Processing triaxial tests

Students are requested to analyze the results of a drained and an undrained triaxial compression tests. The word *drained* is used to describe the condition in which the pore water is allowed to flow freely into or out of the soil sample, and thus dissipate any excess pore pressure. In drained test, a *backpressure* is applied throughout the test in order to ensure sample saturation: the pore water pressure is kept constant and equal to a static value p_w . The word *undrained* indicates that pore water is not allowed to move into or out of the specimen, thus the pore water pressure is not constant.

1. Test conditions

Both samples are prepared in triaxial cells at following dimensions: diameter 38 mm, height 76 mm. Conditions for tests:

- a) drained triaxial test
- Initial isotropic compression up to a cell pressure σ_c = 250 kPa.
- Initial pore water pressure $p_w = 50 \text{ kPa}$.

The sample undergoes a conventional drained triaxial compression test with cell pressure σ_c and pore water pressure ρ_w held constant.

- b) undrained triaxial test
- Initial isotropic compression up to a cell pressure σ_c = 500 kPa.
- Initial pore water pressure $p_w = 80 \text{ kPa}$.

An undrained triaxial compression test is carried out at a constant cell pressure σ_c on the sample.

2. Experimental data

a) Drained triaxial test

After the isotropic compression, the shearing phase is performed. During the shearing phase, the following results are obtained, where F is the applied force, δ is the axial displacement (negative means that the sample height is reducing), ΔV_w is the pore water volume variation (*note*: positive ΔV_w implies that water flows out of the sample).

F (N)	δ (mm)	∆V _w (mm³ · 10³)			
0	0	0			
108	-0.85	1.2			
240	-4.31	4.9			
305	-8.72	7.1			
360	-16.52	8.0			
412	-24.02	8.2			
443	-27.3	8.2			

b) Undrained triaxial test

After the isotropic compression, the shearing phase is performed. The following results are obtained during the shearing phase, where F is the applied force, δ is the axial displacement (negative means that the sample height is reducing) and p_w is the pore water pressure.

F (N)	δ (mm)	p _w (kPa)		
0	0	80		
46	-1.30	112		
85	-3.58	150		
120	-8.39	198		
135	-12.98	206		
152	-18.50	211		
156	-20.50	211		

3. Instructions

Calculate deviatoric stress q, mean effective p' and mean total stress p, axial strain \mathcal{E}_a , and volumetric strain \mathcal{E}_V for each step of the test. Give the resulting values in a table. Then, plot the experimental results in the following planes (y axis - x axis):

- 1. q ε_a
- 2. q p(p')
- 3. $\boldsymbol{\varepsilon}_{v} \boldsymbol{\varepsilon}_{a}$
- 4. $\boldsymbol{\varepsilon}_{v}$ p'
- 5. $p_w \varepsilon_a$

Represent both the total and effective stress paths in the plane q - p (p'), highlighting the difference between the two.

Comment on the difference between the total stress paths and the effective stress path. How is it different from the drained case?

Calculations and results

a) Drained triaxial test:

The following formulae are used to determine the axial and volumetric strain, the deviatoric stress and the mean effective stress. Values at the beginning of the shearing phase are reported with the 0 subscript:

$$\varepsilon_{v} = -\frac{\Delta V}{V_{0}}$$
 with $\Delta V = -\Delta V_{w}$

For a saturated drained test, the variation in pore water volume correspond to the variation in pore volume, thus in sample volume (assuming incompressible grains and water)

$$V_0 = 76 \cdot \pi \cdot \left(\frac{38^2}{4}\right) = 8.62 \cdot 10^4 \ mm^3$$

$$\varepsilon_{a} = -\frac{\delta}{H_{0}}$$

$$A = \frac{V}{H} = \frac{V_0 + \Delta V}{H_0 + \delta} = A_0 \frac{1 - \varepsilon_v}{1 - \varepsilon_a}$$
 with $A_0 = 1134 \ mm^2$

The area of the sample section is not constant, but varies according to the volume and height variations. It needs to be recalculated at each step.

$$q = \sigma_1 - \sigma_3 = \frac{F}{A}$$

with
$$\sigma_1 = \sigma_3 + \frac{F}{4}$$
 and $\sigma_3 = \sigma_c$

$$p' = p - p_w = \frac{\sigma_1 + 2\sigma_3}{3} - p_w = \frac{\frac{F}{A} + 3\sigma_c}{3} - p_w$$

	F (N)	δ (mm)	ΔV _w (mm ³ .10 ³)	H (mm)	V (mm ³ ·10 ³)	A (mm²)	q (kPa)	p (kPa)	€ a (-)	€ ∨ (-)	p' (kPa)
Initial condition	0	0	0	76	86.2	1134	0	250	0.00	0.00	200
	108	-0.85	1.2	75.15	85.0	1131	95	282	0.01	0.01	232
	240	-4.31	4.9	71.69	81.3	1134	212	321	0.06	0.06	271
	305	-8.72	7.1	67.28	79.1	1176	259	336	0.11	0.08	286
	360	-16.52	8	59.48	78.2	1315	274	341	0.22	0.09	291
	412	-24.02	8.2	51.98	78.0	1500	275	342	0.32	0.10	292
	443	-27.3	8.2	48.7	78.0	1601	277	342	0.36	0.10	292

Remarks:

The sign convention for stresses and strains is that of soil mechanics (compression is positive)

In a drained triaxial compression test the total and effective stress path (TSP and ESP respectively) are parallel, and the difference is equal to the pore pressure value p_w , which is constant.

b) Undrained triaxial test

The following formulae are used to determine the axial strain, the deviatoric stress and the mean effective stress:

 $\varepsilon_{v} = 0$ because the test is undrained

$$\varepsilon_{a} = -\frac{\delta}{H_{0}}$$

$$A = \frac{V}{H} = \frac{V_{0} + \Delta V}{H_{0} + \Delta H} = \frac{A_{0}H_{0}}{H_{0}(1 - \varepsilon_{a})} = A_{0}(1 - \varepsilon_{a})^{-1}$$

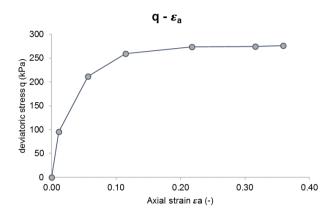
with $\Delta V=0$ and $A_0=1134~mm^2$

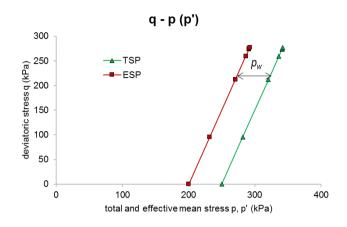
The area of the sample section is not constant, but varies according to height variations, at constant volume. It needs to be recalculated at each step.

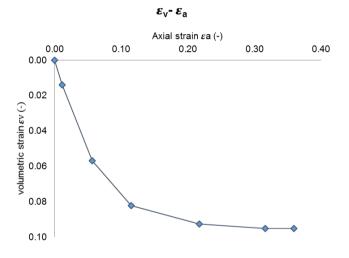
$$q=\sigma_1-\sigma_3=\frac{F}{A}$$
 with $\sigma_1=\sigma_3+\frac{F}{A}$ and $\sigma_3=\sigma_c$
$$p'=p-p_w=\frac{\sigma_1+2\sigma_3}{3}-p_w=\frac{\frac{F}{A}+3\sigma_c}{3}-p_w$$

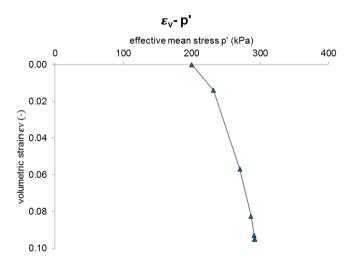
F (N)	δ (mm)	p _w (kPa)	H (mm)	V (mm³)	A (mm²)	q (kPa)	p (kPa)	εa (-)	€V (-)	p' (kPa)
0	0	80	76		1134	0	500	0.00		420
46	-1.3	112	74.7		1154	40	513	0.02		401
85	-3.58	150	72.42		1190	71	524	0.05		374
120	-8.39	198	67.61	86.2·10 ³	1275	94	531	0.11	0	333
135	-12.98	206	63.02		1368	99	533	0.17		327
152	-18.5	211	57.5		1499	101	534	0.24		323
156	-20.5	211	55.5		1553	100	533	0.27		322

Remarks:

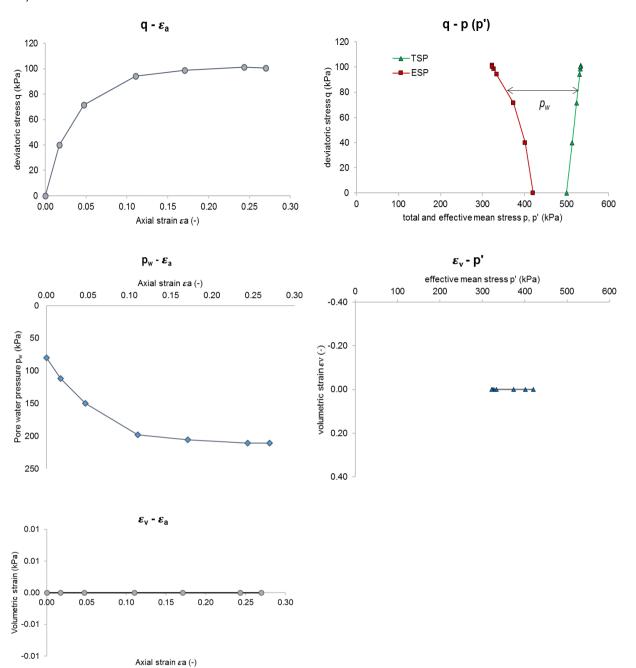

- The sign convention for stresses and strains is that of soil mechanics (compression is positive)
- In undrained conditions, the volume of water flowing into or out of the sample is null, the overall volume change is null.


Difference between the total stress paths and the effective stress paths:


Differently from the drained test, in an undrained test the TSP and EST are not parallel. During the test, water overpressure build up, increasing the difference between the total and effective pressure.


Graphs


a) Drained triaxial test:



b) Undrained triaxial test:

